ГОДОВЫЕ СУММЫ ОСАДКОВ НА ТЕРРИТОРИИ КАМЧАТСКОГО КРАЯ: ДАННЫЕ МОДЕЛЕЙ ПРОЕКТА СМІР6

Л.А. Захарова¹, Н.И.Тананаев^{1,2}

¹Северо-Восточный федеральный университет, г. Якутск; ²Камчатский государственный университет имени Витуса Беринга, г. Петропавловск-Камчатский

Аннотация. Проанализированы данные об осадках 75 моделей проекта СМІР6 – результатов эксперимента 'historical' за период 1961-2010 гг. Получены средние годовые суммы осадков в 30-летних периодах (1961-1990 и 1981-2010), величины изменения между этими периодами — в виде значений, осредненных по всей территории края, и в виде карт распределения, — а также вычислены стандартное и относительное отклонение во временных рядах. Проведены проверки на нормальность распределения, стационарность временных рядов, наличие разрывного нарушения стационарности. При уровне значимости 5% в 9 из 75 моделей распределение во временных рядах по критерию Шапиро-Уилка отлично от нормального, 27 моделей имеют значимый монотонный тренд по критерию Манна-Кендалла, а его величина, оцененная методом Тейла-Сена, всегда положительна и составляет от +13,7 мм/год до +32,7 мм/год за 10 лет. Пространственное распределение больших или меньших сумм осадков в 30-летних периодах в целом достаточно схоже в большинстве моделей, однако в распределении межпериодного изменения или значений статистических критериев совпадений практически нет.

Ключевые слова: климат, изменение климата, атмосферные осадки, СМІР6, климатические модели, ансамбль

TOTAL PRECIPITATION OVER KAMCHATKA ACCORDING TO CMIP6 MODELS

L.A. Zakharova¹, N.I. Tananaev^{1,2}

¹North-Eastern Federal University, Yakutsk; ²Vitus Bering Kamchatka State University, Petropavlovsk-Kamchatsky

Abstract. The output of 75 climate models in CMIP6 'historical' experiment is statistically described for 1961-2010. The average annual sums for two periods – 1961-1990 and 1980-2010 – are derived and compared. The timelines of annual precipitation sums are analysed for normality of distribution using Shapiro-Wilk test, for a monotonous linear trend using Mann-Kendall test, and for a step-trend using Pettitt's test. At 5% significance level, timelines in 9 models show a non-normal distribution; a trend is observed in 27 models, with intensity varying from +13,7 to +32,7 mm per year per 10 years. Mean annual precipitation sums within the 30-year periods, the change between the periods and the values of statistical criteria are mapped with the majority of models showing rather similar spatial distribution of more or less humid regions when averaged over 30 years but strongly disagreeing in the distribution of the remaining parameters.

Keywords: climate, climate change, precipitation, CMIP6, climate models, ensemble

Введение. Для составления проекций долгосрочных изменений климата, являющихся основой для разработки региональных адаптационных мер, используются ансамбли гидродинамических климатических моделей. В них включают модели, наилучшим образом справляющиеся с воспроизведением в данном регионе современного климата, в терминах СМІР — периода с 1850 по 2014 гг., для которого ввиду наличия результатов гидрометеорологических наблюдений наиболее точно, по сравнению со сценариями будущего или реконструкциями прошлого, известны параметры земной системы [1].

По данным [2, 3], на Камчатке происходит в целом неустойчивое изменение внутригодового распределения осадков, при этом прирост их в одни сезоны и уменьшение в другие, разные по выраженности, дают небольшие итоговые тренды в рядах годовых сумм осадков. В рамках данного исследования статистически описаны как сами временные ряды, так и совокупность оценок рассматриваемых моделей: диапазоны значений, их распределение, мера разброса; проведена проверка временных рядов на стационарность, получены карты пространственного распределения годовых сумм осадков, их изменения и статистических критериев.

Материалы и методы. Результаты климатического моделирования находятся в свободном доступе на серверах Earth System Grid Federation (ESGF) и были скачаны оттуда. Использовали данные переменной 'рг' (осадки) месячного разрешения, получены данные 75 моделей. Данные моделирования – файлы формата NetCDF – обрабатывали с помощью авторских скриптов на языке R (извлечение значений, суммирование и осреднение, вычисление попиксельной и обобщенной по региону статистики). Скрипты разработаны в лаборатории по изучению климата и экосистем северных регионов СВФУ имени М.К. Аммосова. Средние по региону суммы осадков рассчитывались как средние арифметические между пикселями, попадающими в административные границы Камчатского края. Сравнивались значения, осредненные по 30-летним периодам, установленным ВМО: базовому 1961-1990 гг. и современному 1981-2010 гг. (моделируемый период заканчивается в 2014 г.). Кроме того, хотя следующие результаты и не вошли в тезисы (но будут представлены в докладе), временные ряды были проверены на нормальность распределения по критерию Шапиро-Уилка, на наличие монотонного линейного тренда по критерию Манна-Кендалла, на наличие разрывного нарушения стационарности по критерию Петтитта. Для нестационарных по критерию Манна-Кендалла рядов определен коэффициент тренда – наклон Тейла-Сена, а для рядов, имеющих статистически значимое разрывное нарушение стационарности по Петтитту – год такого нарушения.

Результаты и их обсуждение. Средние по региону оценки годовых сумм осадков (таблица) для базового периода изменяются в пределах от 627 до 1054 мм, для современного периода — от 650 до 1073 мм. Практически каждая модель показывает ее рост, хотя и небольшой: среднее изменение равно 22 мм — значительно меньше, чем стандартное отклонение в любом из рассматриваемых временных рядов (однако треть рядов имеет статистический значимый, согласно критерию Манна-Кендалла, тренд).

Коэффициент вариации модельных значений (таблица) составляет не более 13% и, по всей видимости, сильно занижен: согласно работе [2], где рассматривались данные метеостанций п-ва Камчатка с 1956 по 2009 гг., «стандартное отклонение годовых осадков [на станциях полуострова] велико – от 80 до 200 мм, однако коэффициент вариации составляет всего 16–27%».

В подавляющем большинстве моделей самая влажная область региона – юго-восток полуострова (юго-восточное побережье, когда разрешение модели позволяет), однако по версиям немногочисленных других максимум осадков выпадает над Срединным хребтом, причем в таком случае это экстремальные суммы осадков (1800-2000 мм в год), почти не встречающиеся у моделей с влажным юго-востоком.

Средние годовые суммы в базовом и современном периоде пространственно распределены одинаково, значения меняются мало (при цветовом градиенте, показывающем пространственную изменчивость, разница между растрами базового и современного периодов неразличима — временное и пространственное среднеквадратичное отклонение просто несопоставимы). Однако совершенно по-разному распределены значения межпериодного изменения (прироста среднегодовой суммы осадков в современном периоде по сравнению с базовым). На рис. 1е — шесть моделей от Earth-Consortium, отличающиеся разрешением и особенностями описания отдельных компонентов. На растрах хорошо различимы зоны, границы которых остаются примерно одинаковыми между моделями этой «семьи»: побережье Карагинского залива; залив Шелихова; акватория Охотского моря к югу от залива Шелихова; юго-западное побережье полуострова Камчатка; Срединный хребет; юго-восточное

побережье полуострова – однако численное значение и даже знак изменения в каждой из этих зон разнятся от модели к модели.

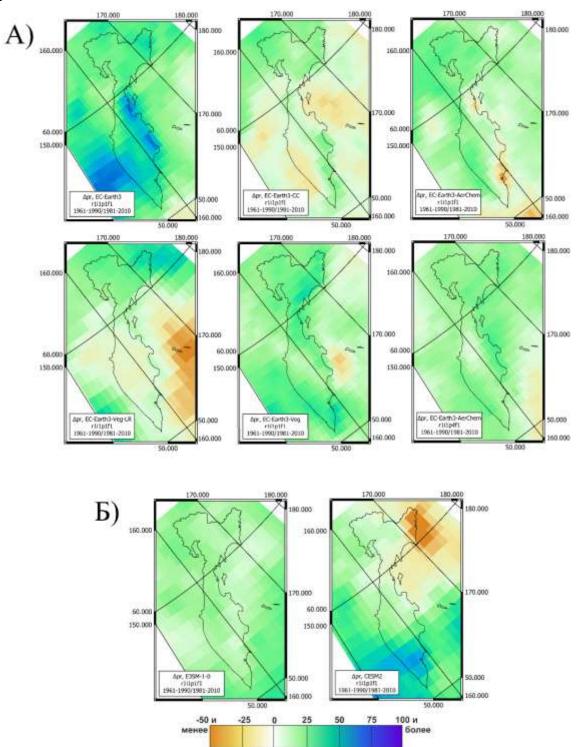


Рис. 1. Пространственное распределение межпериодного изменения: A-y моделей одной «семьи» Earth-Consortium; B-y моделей с наименьшим и наибольшим пространственным контрастом

Таблица 1.

Средние годовые суммы в 30-летних периодах, межпериодное изменение, показатели межгодовой изменчивости модельных рядов за 1961-2014 гг. (среднеквадратическое отклонение и коэффициент вариации внутри временного ряда).

		pr,	pr,			
Модель	Версия	1961-	1981-	Δpr	σ	C _v , %
		1990	2010			
ACCESS-CM2	rlilp1f1	711	700	-11	84	12
ACCESS-ESM1-5	rlilplfl	782	812	29	76	9
AWI-CM-1-1-MR	rlilplfl	856	874	18	80	9
AWI-ESM-1-1-LR	rlilplfl	854	872	18	108	13
BCC-CSM2-MR	rlilplfl	703	712	9	49	7
BCC-ESM1	rlilplfl	690	710	19	75	11
CAMS-CSM1-0	rlilp1f2	722	742	20	70	10
CAMS-CSM1-0	rlilplfl	722	755	33	89	12
CanESM5	rli1p2f1	728	775	47	78	10
CanESM5	rlilplfl	747	790	44	86	11
CanESM5-1	rlilplfl	725	776	51	62	8
CanESM5-1	rli1p2f1	731	752	21	77	10
CanESM5-CanOE	rli1p2f1	728	775	47	78	10
CAS-ESM2-0	rlilp1f1	865	872	7	81	9
CESM2	rlilplfl	775	786	10	88	11
CESM2-FV2	rlilp1f1	689	710	21	82	12
CESM2-WACCM	rlilplfl	783	810	28	74	9
CESM2-WACCM-FV2	rlilplfl	682	688	7	68	10
CMCC-CM2-HR4	rlilplfl	801	845	44	85	10
CMCC-CM2-SR5	rlilplfl	776	825	49	93	12
CMCC-ESM2	rlilplfl	752	802	50	82	10
CNRM-CM6-1	rlilp1f2	878	908	30	81	9
CNRM-CM6-1-HR	rlilp1f2	925	963	38	86	9
CNRM-ESM2-1	rlilp1f2	921	962	41	88	9
E3SM-1-0	rlilplfl	761	771	10	64	8
E3SM-1-1	rlilplfl	747	748	1	67	9
E3SM-1-1-ECA	rlilplfl	713	722	9	72	10
E3SM-2-0	rlilplfl	711	710	0	66	9
E3SM-2-0-NARRM	rlilplfl	660	682	22	68	10
EC-Earth3	rlilplfl	774	823	48	88	11
EC-Earth3-AerChem	rlilp4fl	721	737	17	55	8
EC-Earth3-AerChem	rlilplfl	800	813	13	77	10
EC-Earth3-CC	rlilplfl	841	847	5	83	10
EC-Earth3-Veg	rlilplfl	801	830	29	80	10
EC-Earth3-Veg-LR	rlilplfl	767	776	9	61	8
FGOALS-f3-L	rlilplfl	811	821	10	76	9
FGOALS-g3	rlilplfl	663	650	-14	61	9
FIO-ESM-2-0	rlilplfl	696	704	8	61	9
GISS-E2-1-G	rlilp1f3	860	883	23	94	11
GISS-E2-1-G	rlilplfl	880	914	34	90	10
GISS-E2-1-G	rlilp1f2	882	916	34	97	11
GISS-E2-1-G	rlilp3f1	883	894	10	104	12
GISS-E2-1-G	rlilp5f1	926	948	22	102	11
GISS-E2-1-H	rlilp1f2	860	885	25	95	11
GISS-E2-1-H	rlilp1f1	899	901	3	95	11
GISS-E2-1-H	rlilp3fl	907	922	15	87	10
GISS-E2-1-H	rlilp5fl	935	959	24	112	12

GISS-E2-2-G			1	1			
GISS-E2-2-H r1i1p1f1 686 714 28 71 10 HadGEM3-GC31-LL r1i1p1f3 780 789 9 81 10 HadGEM3-GC31-MM r1i1p1f3 829 825 -4 80 10 IITM-ESM r1i1p1f1 1054 1073 19 88 8 INM-CM4-8 r1i1p1f1 770 788 17 78 10 INM-CM5-0 r1i1p1f1 846 887 40 90 10 IPSL-CM6A-LR r1i1p1f1 885 935 50 89 10 IPSL-CM6A-LR-INCA r1i1p1f1 914 950 36 102 11 KACE-1-0-G r1i1p1f1 702 734 32 85 12 KIOST-ESM r1i1p1f1 627 661 33 52 8 MIROC6 r1i1p1f1 839 849 10 80 10 MIRO-ES2H r1i1p1f2 825 830	GISS-E2-2-G	rlilp3fl	697	695	-2	82	12
HadGEM3-GC31-LL	GISS-E2-2-G	rlilp1f1	706	732	26	64	9
HadGEM3-GC31-MM	GISS-E2-2-H	rlilp1f1	686	714	28	71	10
ITM-ESM	HadGEM3-GC31-LL	rlilp1f3	780	789	9	81	10
INM-CM4-8	HadGEM3-GC31-MM	rlilp1f3	829	825	-4	80	10
INM-CM5-0	IITM-ESM	rlilp1f1	1054	1073	19	88	8
IPSL-CM6A-LR r1itp1f1 885 935 50 89 10 IPSL-CM6A-LR-INCA r1itp1f1 914 950 36 102 11 KACE-1-0-G r1itp1f1 702 734 32 85 12 KIOST-ESM r1itp1f1 627 661 33 52 8 MIROC6 r1itp1f1 839 849 10 80 10 MIROC-ES2H r1itp4f2 739 753 14 77 10 MIROC-ES2L r1itp1f2 825 830 5 87 10 MPI-ESM-1-2-HAM r1itp1f1 833 843 10 91 11 MPI-ESM1-2-HR r1itp1f1 830 856 26 81 10 MPI-ESM2-2-UR r1itp1f1 775 805 30 102 13 MRI-ESM3 r1itp1f1 783 841 58 90 11 NorCPM1 r1itp4f1 686 721	INM-CM4-8	rlilp1f1	770	788	17	78	10
TPSL-CM6A-LR-INCA	INM-CM5-0	rlilp1f1	846	887	40	90	10
KACE-1-0-G r1i1p1f1 702 734 32 85 12 KIOST-ESM r1i1p1f1 627 661 33 52 8 MIROC6 r1i1p1f1 839 849 10 80 10 MIROC-ES2H r1i1p4f2 739 753 14 77 10 MIROC-ES2L r1i1p1f2 825 830 5 87 10 MPI-ESM-1-2-HAM r1i1p1f1 833 843 10 91 11 MPI-ESM1-2-HR r1i1p1f1 775 805 30 102 13 MRI-ESM2-0 r1i1p1f1 775 4 64 8 NESM3 r1i1p1f1 783 841 58 90 11 NorCPM1 r1i1p1f1 638 660 22 61 9 NorESM2-LM r1i1p1f1 717 719 1 89 12 NorESM2-MM r1i1p1f1 724 728 4 73 10 SAM0-UNICON r1i1p1f1 668 665 -4 73 <td>IPSL-CM6A-LR</td> <td>rlilp1f1</td> <td>885</td> <td>935</td> <td>50</td> <td>89</td> <td>10</td>	IPSL-CM6A-LR	rlilp1f1	885	935	50	89	10
KIOST-ESM r1i1p1f1 627 661 33 52 8 MIROC6 r1i1p1f1 839 849 10 80 10 MIROC-ES2H r1i1p4f2 739 753 14 77 10 MIROC-ES2L r1i1p1f2 825 830 5 87 10 MPI-ESM-1-2-HAM r1i1p1f1 833 843 10 91 11 MPI-ESM1-2-HR r1i1p1f1 830 856 26 81 10 MPI-ESM1-2-LR r1i1p1f1 775 805 30 102 13 MRI-ESM2-0 r1i1p1f1 771 775 4 64 8 NESM3 r1i1p1f1 783 841 58 90 11 NorCPM1 r1i1p1f1 638 660 22 61 9 NorESM2-LM r1i1p1f1 717 719 1 89 12 NorESM2-MM r1i1p1f1 724 728 4	IPSL-CM6A-LR-INCA	rlilp1f1	914	950	36	102	11
MIROC6 rlilp1f1 839 849 10 80 10 MIROC-ES2H rlilp4f2 739 753 14 77 10 MIROC-ES2L rlilp1f2 825 830 5 87 10 MPI-ESM-1-2-HAM rlilp1f1 833 843 10 91 11 MPI-ESM1-2-HR rlilp1f1 830 856 26 81 10 MPI-ESM1-2-LR rlilp1f1 775 805 30 102 13 MRI-ESM2-0 rlilp1f1 771 775 4 64 8 NESM3 rlilp1f1 783 841 58 90 11 NorCPM1 rlilp4f1 638 660 22 61 9 NorESM2-LM rlilp1f1 717 719 1 89 12 NorESM2-MM rlilp1f1 724 728 4 73 10 SAM0-UNICON rlilp1f1 668 665 -4	KACE-1-0-G	rlilp1f1	702	734	32	85	12
MIROC-ES2H r1i1p4f2 739 753 14 77 10 MIROC-ES2L r1i1p1f2 825 830 5 87 10 MPI-ESM-1-2-HAM r1i1p1f1 833 843 10 91 11 MPI-ESM1-2-HR r1i1p1f1 830 856 26 81 10 MPI-ESM1-2-LR r1i1p1f1 775 805 30 102 13 MRI-ESM2-0 r1i1p1f1 771 775 4 64 8 NESM3 r1i1p1f1 783 841 58 90 11 NorCPM1 r1i1p1f1 638 660 22 61 9 NorESM2-LM r1i1p1f1 717 719 1 89 12 NorESM2-MM r1i1p1f1 724 728 4 73 10 SAM0-UNICON r1i1p1f1 668 665 -4 73 11 TaiESM1 r1i1p1f2 727 807 80 <td>KIOST-ESM</td> <td>rlilp1f1</td> <td>627</td> <td>661</td> <td>33</td> <td>52</td> <td>8</td>	KIOST-ESM	rlilp1f1	627	661	33	52	8
MIROC-ES2L r1i1p1f2 825 830 5 87 10 MPI-ESM-1-2-HAM r1i1p1f1 833 843 10 91 11 MPI-ESM1-2-HR r1i1p1f1 830 856 26 81 10 MPI-ESM1-2-LR r1i1p1f1 775 805 30 102 13 MRI-ESM2-0 r1i1p1f1 771 775 4 64 8 NESM3 r1i1p1f1 783 841 58 90 11 NorCPM1 r1i1p1f1 638 660 22 61 9 NorESM2-LM r1i1p4f1 686 721 35 62 9 NorESM2-MM r1i1p1f1 724 728 4 73 10 SAM0-UNICON r1i1p1f1 668 665 -4 73 11 TaiESM1 r1i1p1f2 727 807 80 99 13	MIROC6	rlilp1f1	839	849	10	80	10
MPI-ESM-1-2-HAM r1i1p1f1 833 843 10 91 11 MPI-ESM1-2-HR r1i1p1f1 830 856 26 81 10 MPI-ESM1-2-LR r1i1p1f1 775 805 30 102 13 MRI-ESM2-0 r1i1p1f1 771 775 4 64 8 NESM3 r1i1p1f1 783 841 58 90 11 NorCPM1 r1i1p1f1 638 660 22 61 9 NorESM2-LM r1i1p4f1 686 721 35 62 9 NorESM2-MM r1i1p1f1 717 719 1 89 12 NorESM2-MM r1i1p1f1 724 728 4 73 10 SAM0-UNICON r1i1p1f1 668 665 -4 73 11 TaiESM1 r1i1p1f2 727 807 80 99 13	MIROC-ES2H	rlilp4f2	739	753	14	77	10
MPI-ESM1-2-HR r1i1p1f1 830 856 26 81 10 MPI-ESM1-2-LR r1i1p1f1 775 805 30 102 13 MRI-ESM2-0 r1i1p1f1 771 775 4 64 8 NESM3 r1i1p1f1 783 841 58 90 11 NorCPM1 r1i1p1f1 638 660 22 61 9 NorESM2-LM r1i1p4f1 686 721 35 62 9 NorESM2-MM r1i1p1f1 717 719 1 89 12 NorESM2-MM r1i1p1f1 724 728 4 73 10 SAM0-UNICON r1i1p1f1 668 665 -4 73 11 TaiESM1 r1i1p1f1 659 688 29 74 11 UKESM1-0-LL r1i1p1f2 727 807 80 99 13	MIROC-ES2L	rlilp1f2	825	830	5	87	10
MPI-ESM1-2-LR r1i1p1f1 775 805 30 102 13 MRI-ESM2-0 r1i1p1f1 771 775 4 64 8 NESM3 r1i1p1f1 783 841 58 90 11 NorCPM1 r1i1p1f1 638 660 22 61 9 NorESM2-LM r1i1p4f1 686 721 35 62 9 NorESM2-LM r1i1p1f1 717 719 1 89 12 NorESM2-MM r1i1p1f1 724 728 4 73 10 SAM0-UNICON r1i1p1f1 668 665 -4 73 11 TaiESM1 r1i1p1f1 659 688 29 74 11 UKESM1-0-LL r1i1p1f2 727 807 80 99 13	MPI-ESM-1-2-HAM	rlilp1f1	833	843	10	91	11
MRI-ESM2-0 r1i1p1f1 771 775 4 64 8 NESM3 r1i1p1f1 783 841 58 90 11 NorCPM1 r1i1p1f1 638 660 22 61 9 NorESM2-LM r1i1p4f1 686 721 35 62 9 NorESM2-LM r1i1p1f1 717 719 1 89 12 NorESM2-MM r1i1p1f1 724 728 4 73 10 SAM0-UNICON r1i1p1f1 668 665 -4 73 11 TaiESM1 r1i1p1f1 659 688 29 74 11 UKESM1-0-LL r1i1p1f2 727 807 80 99 13	MPI-ESM1-2-HR	rlilp1f1	830	856	26	81	10
NESM3 r1i1p1f1 783 841 58 90 11 NorCPM1 r1i1p1f1 638 660 22 61 9 NorESM2-LM r1i1p4f1 686 721 35 62 9 NorESM2-LM r1i1p1f1 717 719 1 89 12 NorESM2-MM r1i1p1f1 724 728 4 73 10 SAM0-UNICON r1i1p1f1 668 665 -4 73 11 TaiESM1 r1i1p1f1 659 688 29 74 11 UKESM1-0-LL r1i1p1f2 727 807 80 99 13	MPI-ESM1-2-LR	rlilp1f1	775	805	30	102	13
NorCPM1 r1i1p1f1 638 660 22 61 9 NorESM2-LM r1i1p4f1 686 721 35 62 9 NorESM2-LM r1i1p1f1 717 719 1 89 12 NorESM2-MM r1i1p1f1 724 728 4 73 10 SAM0-UNICON r1i1p1f1 668 665 -4 73 11 TaiESM1 r1i1p1f1 659 688 29 74 11 UKESM1-0-LL r1i1p1f2 727 807 80 99 13	MRI-ESM2-0	rlilp1f1	771	775	4	64	8
NorESM2-LM r1i1p4f1 686 721 35 62 9 NorESM2-LM r1i1p1f1 717 719 1 89 12 NorESM2-MM r1i1p1f1 724 728 4 73 10 SAM0-UNICON r1i1p1f1 668 665 -4 73 11 TaiESM1 r1i1p1f1 659 688 29 74 11 UKESM1-0-LL r1i1p1f2 727 807 80 99 13	NESM3	rlilp1f1	783	841	58	90	11
NorESM2-LM r1i1p1f1 717 719 1 89 12 NorESM2-MM r1i1p1f1 724 728 4 73 10 SAM0-UNICON r1i1p1f1 668 665 -4 73 11 TaiESM1 r1i1p1f1 659 688 29 74 11 UKESM1-0-LL r1i1p1f2 727 807 80 99 13	NorCPM1	rlilp1f1	638	660	22	61	9
NorESM2-MM r1i1p1f1 724 728 4 73 10 SAM0-UNICON r1i1p1f1 668 665 -4 73 11 TaiESM1 r1i1p1f1 659 688 29 74 11 UKESM1-0-LL r1i1p1f2 727 807 80 99 13	NorESM2-LM	rlilp4fl	686	721	35	62	9
SAM0-UNICON r1i1p1f1 668 665 -4 73 11 TaiESM1 r1i1p1f1 659 688 29 74 11 UKESM1-0-LL r1i1p1f2 727 807 80 99 13	NorESM2-LM	rlilp1f1	717	719	1	89	12
TaiESM1 r1i1p1f1 659 688 29 74 11 UKESM1-0-LL r1i1p1f2 727 807 80 99 13	NorESM2-MM	rlilp1f1	724	728	4	73	10
UKESM1-0-LL r1i1p1f2 727 807 80 99 13	SAM0-UNICON	rlilp1f1	668	665	-4	73	11
* * * * * * * * * * * * * * * * * * * *	TaiESM1	rlilp1f1	659	688	29	74	11
UKESM1-1-LL r1i1p1f2 802 838 36 77 9	UKESM1-0-LL	rlilp1f2	727	807	80	99	13
	UKESM1-1-LL	rlilp1f2	802	838	36	77	9

Выводы.

Статистически описаны модельные оценки годовых сумм осадков на территории Камчатки: диапазоны значений, их распределение, мера разброса; получены и проанализированы карты распределения различных параметров, — что при сравнении с данными наблюдений позволит оценить точность воспроизведения моделями климата региона и может в дальнейшем быть использовано при выборе моделей для регионального ансамбля.

Литература

- 1. Eyring V., Bony S., Meehl G.A., Senior C.A., Stevens B., Stouffer R.J., Taylor K.E. (2016) Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geoscience Model Development 9, 1937–1958. https://doi.org/10.5194/gmd-9-1937-2016.
- 2. Третий оценочный доклад об изменениях климата и их последствиях на территории Российской Федерации / под ред. В. М. Катцова. Санкт-Петербург: Наукоемкие технологии, 2022. 676 с.
- 3. Шкаберда О.А., Василевская Л.Н. Многолетняя изменчивость температурновлажностного режима на полуострове Камчатка // Известия ТИНРО. 2014. Т. 178, №3. С. 217-233. https://doi.org/10.26428/1606-9919-2014-178-217-233.